
Theor Chim Acta (1993) 87:215-232 Theoretica 
Chimica Acta 
© Springer-Verlag 1993 

Characterization of vibrational transition modes 
by use of normal forms 

Sergio Abbate 1, Danila Ghisletti 2, Antonio Giorgilli 2, Laure Lespade 3, 
and Giovanna Longhi 1 
1 Dipartimento di Chimica, Universit~ della Basilicata, Via Nazario Sauro 85, 
1-85100 Potenza, Italy 

2 Dipartimento di Matematica, Universit~ di Milano, Via Saldini 50, 1-20133, Milano, Italy 

3 Laboratoire de Spectroscopie Moleculaire et Cristalline, Universit6 de Bordeaux I, 
Rue de la Liberation 351, F-33405 Talence Cedex, France 

Received September 22, 1992/Accepted February 23, 1993 

Summary. In this paper we use the Birkhoff-Gustavson perturbation theory to 
analyze the vibrational modes of two linearly coupled Morse oscillators in the 
transition region from normal modes to local modes. Our study is based on: 
truncation of the Hamiltonian written in normal mode coordinates at the 4th 
order, transformation to normal form and analytical study; construction and use of 
the approximate integrals of motion of the exact Hamiltonian according to 
Birkhoff and Gustavson theory. By comparison with a previous analytical study, 
we demonstrate that perturbation theory, based either on local or normal modes 
can be used to accurately describe transition modes. 
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1 Introduction 

In this work we carry out a study started in a previous paper on the classical 
dynamics of two linearly coupled Morse oscillators [1]. Our model Hamiltonian is: 

2 
H = Z {(P2/2m) + D,[I - e x p [ -  ai(l, - / i o ) ] ]  2 } 

i=1 

+ K( l l  --/10)(12 --/20) (1) 

Here, It and lto are the instantaneous and equilibrium bond lengths, Pt are their 
conjugate momenta, and m is the reduced mass for both bonds. The relations 
between the Morse potential parameters D~, at and the mechanical frequencies 
co~ and anharmonicity constant Z~ (cm-1) are: 

Di = (hcco~2 /4Zt) 

at = ~/(8n2mczi/h)  
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(where h is the Planck's constant, c the speed of light). The numerical experiments 
which follow were run, as in the previous paper of this series [1], °with 

t t col = (o2 = 3000 cm - i ,  Z1 = Z2 = 60c m - i ,  m = 1 a.u., and llo = 12o - -  1.0A. 
Systems of this sort have been widely studied in the literature [1-3] especially 

via numerical integration of the classical equations of motion and a classical 
perturbative treatment based on local modes; the latter approach goes back 
to Chirikov's analysis of nonlinear dynamical systems [4] and was adapted to 
this particular Hamiltonian by Jaff6 and Brumer [3]. Following both these ap- 
proaches we suggested the existence of transition modes, with features intermediate 
between those of local and normal modes. We have characterized these modes and 
evaluated, via numerical integration, the energy range in which they can be found 
for the system with the parameters referred to above (typical of methylenic 
stretchings); for a general case of two equivalent oscillators the perturbative 
approach mentioned above gives the same energy range for transition modes in 
analytical form. 

We intend here to apply the classical perturbation method, known as the 
Birkhoff-Gustavson normal form, which privileges the normal mode coordinates 
[5, 6]. We shall compare different kinds of approximations in studying our physical 
model: on the one hand, we build approximate integrals of motion in the form of 
power series expansion truncated at some degree n (in our case n = 32); on the 
other hand, we construct the normal form of the Hamiltonian up to order 4, and 
reduce it to a system with one degree of freedom via a suitable canonical trans- 
formation, so that the corresponding phase space curves can easily be drawn. Since 
we are especially interested in CHz-groups, we have considered two oscillators 
which are not very different from each other and with not too strong a coupling 
(K is a few hundredths of the principal harmonic force constant). This forces us to 
take into account the n:n resonances, which turn out to be responsible for the 
phenomenon of transition from normal to local modes. 

It is also interesting to compare the normal mode approach used here 
with the local mode one used in our previous work [1] and in Ref. [3]. The 
correspondence between quantum Hamiltonians on a local mode basis and on 
a normal mode basis has been already stated by many authors [7-10]. This 
equivalence has been shown in general using the property of symmetry of two 
oscillators of equal frequency, namely the SU(2) symmetry algebra [8-10]. The 
normal mode Hamiltonian of Darling-Dennison type presented in the literature 
is derived here from Eq. (1) via a classical perturbative treatment, and it is shown 
to be nothing but the normal form of the Hamiltonian of Eq. (1) truncated at 
4th order. 

The paper is organized as follows: in Sect. 2 we recall the essentials of the 
normal form method, and illustrate how to transform our Hamiltonian of Eq. (1), 
so that the method can be applied. In Sect. 3 we compare the Poincar6 Surfaces of 
Section (PSS) obtained numerically from the exact Hamiltonian with a) the level 
curves of the approximate integrals of motion and b) the PSS of the truncated 
Hamiltonian. In Sect. 4 we investigate the transition modes by examining the phase 
space curves corresponding to the analytical expression of the 4th order Hamil- 
tonian in terms of action-angles variables. We then make further observations on 
transition modes in Sect. 5 with the help of both normal and local representation. 
Finally we report in Appendices A and B some technical details on the computa- 
tion of the normal form, also considering the general case of non-identical oscil- 
lators and kinetic coupling. 
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2 Perturbative method 

We recall here the essential points of the procedure of the normal form methods as 
introduced by Birkhoff [5a-c].  One starts with an Hamil tonian of the form: 

n(x, y) = nt2)(x, y) + H(a)(x, y) + • • • (2) 

where ( x , y ) e R  2" are canonically conjugate variables, H~)(x,y), for s > 2 is 
a homogeneous polynomial of degree s, and H~2)(x, y) has the form: 

1 t 2 n~2)(x, y) = Y',~09i(xi + y2) (2a) 

By a near to identity canonical transformation, the Hamiltonian above can be 
reduced to the so called Birkhoff normal form. Precisely the transformed Hamil- 
tonian has the form (similar to the original one): 

z(~z, 37) = z~2~(~, 37) + z~3~(~z, 37) + . . .  

and satisfies the additional properties: 

Z ( 2 ) = H  ~2), DZ=O, 

= Hamiltonian n . where D" {H~2), • } is the Poisson bracket with the unperturbed ,,(2) 
A standard result on normal forms is the following: assume that the frequencies 

co'~ . . . . .  09', of the unperturbed system satisfy r independent resonance relations, 
with 0 ~< r < n, namely that m. 09' = 0 for r linearly independent integer vectors 
_m~Z"; then there are n -  r independent first integrals of Z which are suitable 
linear combinations of the new action variables; precisely they have the form: 

¢7(~,y)  ~ 2  ,~ , + )72)  (3) 

where _~ ~ R" has to satisfy m ' ~  = 0 for all _me Z" such that m" 09' = 0. Thus, in the 
nonresonant case, the system turns out to be formally integrable; as usual, "for-  
mally" means here that we neglect the problems related to the convergence of the 
series. The case r = 1 turns out to be integrable, too. In this case, the normal 
Hamil tonian Z depends, in general, on all the new action variables ½(2 2 + y2), 
i =  1 . . . . .  n and on one of the new angles; thus Z cannot be expressed as 
a function of the n - 1 first integrals found above. This gives a total of n first 
integrals independent and in involution, which ensures integrability in view of 
Liouville's theorem. In particular, the normal form is always (formally) integrable 
for systems with two degrees of freedom, since there is at most one resonance 
relation. 

Using again the canonical transformation, which can be given an explicit form 
[6], we can also express the first integrals ~ of Z in the old variables, thus getting ~, 
the first integrals of H, which are power series in x, y starting with the quadratic 
term 4~. Such a procedure can be carried out in a very efficient way by using the 
methods based on Lie transform. We actually used the algorithm and the related 
computer  program illustrated in Ref. [6a]. 

The application to a system of two degrees of freedom, as the one considered 
here, goes as follows: 

i) In the nonresonant case, r = 0, one can construct two first integrals for H, which 
are perturbations of the harmonic actions I j  1 2 = ~(xj + y]); such first integrals also 
turn out to be (formal) action variables for the complete Hamiltonian. 

ii) In the resonant case there exists only one first integral which is in fact a per- 
turbation of H ~a), but is independent of the Hamiltonian. 
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This theory has been first introduced in the physical chemistry literature by 
Swimm and Delos [ l l a ] ,  considering H~non-Heiles-type Hamiltonians. In order 
to apply these methods to our system we should first give our Hamiltonian of 
Eq. (1) the form of Eq. (2). This process is well known as diagonalization of the 
quadratic part of the Hamiltonian and provides us with normal coordinates. The 
reason we report it briefly here, is to provide the notation for the coordinates used 
throughout the paper. 

After a Taylor expansion of Eq. (1) in (li - lio): 

• We introduce mass-weighted coordinates Q i  = ,v/m(li - l i o )  and Pi = (1/w/-m)Pl. 
In presence of a kinetic coupling G12PlP2, the kinetic tensor must be diagonalized 
first and Qi assume the symmetric and antisymmetric character of normal coordin- 
ates (see Appendix A). 

• Secondly the potential must be diagonalized, the normal mode basis which 
d i a g o n a l i z e s  H (2) is: 

cos, sin,)(0 ) 
_ - sin 6 cos 6 Qz (4) 

with sin26 = 2 ( K /m ) / , J  ( 09 'l 2 - 09'22) 2 + 4 ( K /m ) 2 

09 2 = ½{(09'i 2 + o)~ 2) _.+ x/(¢o] 2 -- c0~2) 2 + 4(K/m)  2 } (4a) 

subscripts + and - j u s t  refer to the high and low frequency respectively. In the 
presence of kinetic coupling, Eqs. (4) and (4a) are modified (see Appendix A), but 
formally all following equations remain the same. The normal coordinates Q + and 
Q_ have symmetric and antisymmetric character respectively if K > 0, antisym- 
metric and symmetric if K < 0. 

• In frequency-weighted coordinates x_+ = ,~/~--~-~ Q±, y± = ( 1 / ~ - ~ ) "  P___ we ob- 
tain Eqs. (2,2a); the Hamiltonian H(x±,  y±) coincides with one used by Mills 
and Robiette in their quantum perturbative treatment, with the inclusion of 
Darling-Dennison coupling [7]. In Appendix B we report H 13) and H ~g) for the 
general case of two different oscillators. 

In constructing the Hamiltonian Z, we note that the third-order term Z ~3) here 
vanishes, because we do not consider the 2:1 resonance [12, 13]. The first non- 
vanishing term is Z (4), which contains quadratic terms in the action variables, and 
resonant terms, due to the 1 : 1 resonance, depending on the difference, ¢ + - ¢_  
say, of the phases. We take into account this resonance because in our system we 
have co+ ~ co_. The explicit expression of Z ~*) will be given in Sect. 4. 

Furthermore, it is evident that the integral associated to our resonance is, from 
Eq. (3): 

1 - 2  = ~ ( x  + + y~+) + ½(~z ~_ + y2_) = I+  + ~_  = J 

where I + and I_ are the actions of the normal coordinates Q + and Q_. Thus the 
first integral of our normal Hamiltonian Z is the total action J of the two normal 
oscillators. 
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3 Poincar~ surfaces of section and level curves 

The use of formal expansions as a tool for integration is a common procedure in 
astronomy. Numerical application to models of the type considered here have been 
started in the sixties by Contopoulos [5b] and Gustavson [5c]. More recently 
formal integrals have been used, also in the field of physical chemistry, by many 
authors [11, 14] in order to calculate energy level distributions. Our purpose here 
is to compare the detailed structure of phase space obtained from formal integrals 
with that found by numerical integration, for the case of two Morse oscillators, at 
low energy. We have treated only the case of identical oscillators. We have 
integrated numerically the exact Hamiltonian of Eq. (1), expressed in normal 
coordinates Q ÷, Q_ Eq. (4), by an algorithm based on the central point approxima- 
tion. In Figs. 1A, 2A we report the PSS for two cases of interest for studying the 
transition normal-local modes (see captions). The same cases have been treated in 
Ref. [1] with a different representation. Here we use the section plane Q+ = 0, 
P+/> 0 (considering cases with K < 0) because the limit curve Q÷ = P+ = 0 is 
a system trajectory, precisely the one representing the pure symmetric motion; this 
fact, also pointed out a long time ago by Thiele and Wilson [15], guarantees, for 
the uniqueness of the solutions of the differential Hamilton equations, that no 
trajectory crosses the limit curve and so no trajectory is partly cancelled by the 
section. 

These PSS are symmetric with respect to the line P_ = 0 and the distinction 
between normal and local modes is evident. As already noted by Lawton and Child 
[16], each normal mode trajectory is symmetric; both symmetric and the antisym- 
metric normal mode trajectories are part of the same family of curves. Local modes 
appear instead as pairs of twin trajectories one lying in the P_ > 0 and the other in 
the P_ < 0 semiplane; such trajectories are obtained by choosing initial data with 
opposite AEI, (the initial energy difference between the two oscillators). Transition 
modes are actually part of the latter family. The real distinction between transition 
and local modes comes from energy and phase considerations on the local basis [1] 
or on the normal basis oscillators (see next paragraph and Ref. [17]). 
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Fig. 1. Poincar6 Surfaces of Section in (Q_,P_) coordinates for Hamiltonian of Eq. (1) 
(K = - 0 . 1  mdyne/.~, 09'= 3000 c m - l ,  X = 60 cm-1)  at total energy ET = 2000 cm-1. A) Numer- 
ically calculated PSS, with initial conditions AEi, = 0, 500, 1000, 1500 cm-  1 and A for the innermost 
circles; and ___ 1500, + 1000, __+ 500 cm-  1 and S for the couples of curves close to the border. (A means 
that at time t = 0 the local coordinates are ll = 12 = l0 and the sign of pa is opposite to that of P2; 
S means that ll = 12 = lo and the sign of pl is the same as that of p2). B, C, D) Level curves obtained by 
use of the approximate integrals of motions at 4th, 8th, and 32nd order, with initial conditions chosen on 
curves of square A) as described in the text 
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Fig. 2. PSS in (Q_,P_) coordinates for Hamiltonian of Eq. (1) (K=-0.1mdyne/A, 
09' = 3000 cm- 1, Z = 60 cm- 1) at total energy Er = 4000 era- 1. A) Numerically calculated PSS, with 
initial conditions dEi. = 0, 1000, 2000, 3000 cm- 1 and A for the innermost circles; and _ 1000, 
___ 2000, __+ 4000, ___ 3000, ___ 3950 and S for the couples of curves close to the border. B, C, D) Level 

curves obtained by use of the approximate integrals of motions at 4th, 8th, and 32nd order, with initial 
conditions chosen on curves of square A) as described in the text. 

Here, we determine the thresholds, Etr and E~oc say, at which transition and 
local modes respectively start to appear  by the following criterion, inspired by our 
previous work [1]. We increase Ea- starting from 0, and determine Err as the value 
at which the first nonsymmetric trajectory appears; this actually corresponds to 
a bifurcation of the central periodic trajectory, giving rise to transition modes in 
our language. The second threshold Eloo is referred to the character of the particu- 
lar family of trajectories with AEin = -1- ET. For  ET < E~o¢ the curves in the PSS 
generated by such trajectories are symmetric, while they become nonsymmetric for 
Ea ~ > Eioo. For  ET > E~oc, transition modes still exist, they give PSS curves inside 
the AEi, = + E.r ones, local modes instead are outside such curves. 

To compare the PSS with the level curves we report in Figs. 1B, 1C, 1D, 2B, 2C, 
the same cases in Hamil tonian and total energy treated in Figs. 1A and 2A; these 
curves are obtained by the formal expansion illustrated above, truncated at 4th, 
8th, 32nd order, respectively. The comparison is to be performed by superposition 
curve by curve. The level curves are found as follows. Denoting by O(Q ±, P ± ) the 
truncated first integral of H, we determine its value O(Q o,  pO ) at an initial point 
picked up from the PSS curves of Figs. 1A and 2A. Next, we set Q + = 0, and for 
Q_,  P_  inside the limiting curve we determine P+ > 0 from H(Q+_, P±)= E.r, 
namely the conservation of energy. This makes O(Q ±, P ±) to actually depend on 
Q_, P_ only, and we draw the level lines of this function of two variables. Looking 
at the Figures, one immediately sees that an 8th order approximation is very good 
at these low energies: it is much better than the 4th order one, and adding further 
orders does not actually improve the results, as one sees from comparison of 
Figs. 1C and 1D. It  can be noticed that level curves constructed with these 
truncated formal integrals introduce spurious new families of curves and false fixed 
points (see Figs. 1B, 2B) which are partly corrected at higher orders of approxima- 
tion (Figs. 1C, 1D, 2C) if the total energy is not too high. All the level curves not 
involved in these artifacts superimpose almost exactly to the PSS curves. From this 
fact, one can infer that integration via expansions at 8th order describe satisfac- 
torily the dynamics of our system, at the energy of interest for the transition nor- 
mal modes-local  modes. 
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Fig. 3. Comparison of the PSS calculated numerically on the Hamiltonian of Eq. (1) (square A) and on 
its Taylor expansion up to the 4th order (B1) (square B): e ;=3000cm -1, Z=60cm-1,  
K = -- 0.1 mdyne/A, Er = 2000 cm- 1. The other initial conditions (in terms of AE~,) are the same in 
the two cases 

Table 1. Comparison of the energy thresholds (in cm -x) of transition mode Etr and of 
local modes E~oc (see text) calculated numerically on the exact Hamiltonian of Eq. (1) 
(exact), on an Hamiltonian which is a truncation of Eq. (1) at 4th order, at 5th order, at 
6th order, and thresholds deduced by the analytical approach of Sect. 4 (analytical) 

exact 4th 5th 6th analyt. 

( K =  -- O.lmdyne/A) 
Err 1467.5 1608.5 1481 1493.5 1462 
EIoo 2902.5 3491.5 2841.5 2907.5 2925 

(K = + 0.1 mdyne/A) 
Etr 1345 1425 1332.5 1342.5 1336.5 
Ejo~ 2645.5 3058 2601.0 2649.0 2671.9 

A further  compa r i son  can be made  with PSS ob ta ined  f rom numer ica l  in tegra-  
t ion of the H a m i l t o n i a n  t runca ted  at  4th order ,  as expressed by Eq. (B1). The  
qual i ta t ive  results  are very good:  the fixed points ,  and  all the families of curves are 
obta ined ,  wi thou t  artifacts. However ,  f rom Fig. 3 it  is evident  tha t  the region 
occupied  by  t rans i t ion  modes  and  local  modes  is less ex tended in the la t te r  case. 
The same seems to happen  in Figs. 1B, 2B for the level curves with 4th o rde r  
t runcat ion .  Quan t i t a t ive ly  we can test the 4th o rde r  a p p r o x i m a t i o n  of the Hami l -  
ton ian  by  numer ica l ly  calcula t ing the thresholds  Etr and  Eloc. We repor t  the results 
in Table  1 as der ived f rom the "exact"  and  the 4th order  Hami l ton ian .  

4 Phase space in the resonant angle-action variables 

To s tudy analy t ica l ly  the dynamics  of  the system, we examined  direct ly  the 
t runca ted  H a m i l t o n i a n  Z ( ~ , y ) =  Z t 2 ) ( ~ , f i ) +  Zt4)(~,~) ,  which is bui l t  on the 
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a s s u m p t i o n  of  a 1 : 1 r e s o n a n c e  due  to  the  p h y s i c a l  r e q u i r e m e n t  co + ,~ co_. A t  th is  
p o i n t  i t  is useful  to  i n t r o d u c e  the a c t i o n - a n g l e  va r i ab l e s  q~_+, I+_ for  the  n o r m a l  
h a r m o n i c  osc i l l a to r s .  T h e  e x p r e s s i o n  o b t a i n e d  for  Z (4) d e p e n d s  on ly  on  one  ang le  
c o o r d i n a t e  OR = q~ + --  q~-, so there  m u s t  be  a cycl ic  c o o r d i n a t e ,  s ay  0. F r o m  the  
de f in i t i on  of  OR, i t  t u rns  o u t  t h a t  the  a c t i o n  c a n o n i c a l l y  a s s o c i a t e d  wi th  0 is 
J = I +  + I _ ,  i m p l y i n g  t h a t  this  is a c o n s t a n t  of  m o t i o n ,  as a l r e a d y  f o u n d  in Sect. 2. 
F o l l o w i n g  a s t a n d a r d  scheme,  we p e r f o r m  the c a n o n i c a l  t r a n s f o r m a t i o n :  

OR = q~+ - q~- JR = I +  

0 =  4 _  J = I +  + I _  

The  H a m i l t o n i a n  thus  o b t a i n e d  for  i den t i ca l  o sc i l l a to r s  has  the  gene ra l  form:  

Z = Z ~2) + Z (4) = BJ2R + (A J  + A)JR + CJR(J -- JR)cos20n 

+ bJ 2 + og-J  (5) 

wi th  coeff ic ients  A, B, C, A, b t h a t  we give he re  expl ic i t ly .  N o t i c e  t h a t  the  t e rm  A JR is 
due  to  the  c o n d i t i o n  of  n o n e x a c t  r e sonance :  o9+ ¢ o9_. W e  get  the  values :  

B = a + b - c  

A =  - 2 b + e  

a = (3 /2 )K+  + + + - (15/4)K2+ + +/09+ + (1/4)K2+ + _ 

x (3o9 2_ - 8o92+ )/o9_ (4o92+ - ¢o2_) 

b = (3 /2 )K . . . .  - (15 /4 )K 2 _ _ _/co_ + (1/4)K2+ __  

x (3o9 2 - 8o92_)/o9+ (4o92_ - ¢o2+) 

c = K + + _ _  - 3K+++K+__/Og+ - 3 K _ _ _ K + + _ / O g _  

- 2o9+ KZ+ + _/(4o92+ - o92_ ) _ 2o9_ KZ+ _ _/(4o92_ - o92+) 

C = K + + _ _ / 2  + K+++K+__/4Og+ + K _ _ _ K + + _ / 4 O g _  

+ 3o9+ K +  _ _ K +  + +/4(4o92_ - o92+ ) 

+ 3og_K++_K___/4(4o92+ _ o92) 

- K2+ +_ o9+/o9_ (2o9+ - co_) - KZ+__ o9_/o9+ (2o9_ - co+) 

A = o9+ - - o 9 _  

T h e  a b o v e  c o n s t a n t s  K ' s  a re  the  coeff ic ients  of  the  H a m i l t o n i a n  H(x+_, y+_) as 
r e p o r t e d  in Eq.  (B1); in  p a r t i c u l a r ,  for  t w o  iden t i ca l  o sc i l l a to r s  the  on ly  n o n v a n i s h -  
ing c o n s t a n t s  (for s y m m e t r y  reasons )  are:  

i f K > 0 ,  K + + +  = -o9'2x//-}/2o93/2;  K +  . . . .  3Og'2x/'}/2Og_OgV z 

i f K  < 0, K . . . .  o9'zx/'-}/2o9 3_/2; K + + _ = 3og'2x/'}/2og + o91J z 

a n d  K +  + + + = 7og'2Z/24ogz+; K . . . . .  7o9'2Z/24o92 - 

K +  + _ _ = 7o9'2Z/4(o9+ co_) r ega rd l e s s  of  the  s ign of  K .  
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We use wavenumber units for energies and frequencies, and J and JR are dimen- 
sionless actions. The frequencies co+ are obtained from Eq. (4a) with 
x / ( K / m )  rad/sec = 1301.9 (x /~ /m)  c m -  1. The case of two nonidentical oscillators 
is discussed in Appendix B. 

Equation (5) has the advantage that it can be handled analytically so that 
information can be gained about the system in general, and not only inferred from 
the particular numerical experiment chosen. It can be also useful to consider the 
following approximate expression, obtained by neglecting the terms of the order of 
zA/co '2 (A = K/(4rc2cZm)): 

z = z J ~  + (A - XJ)JR - XJR(J - JR)cos  20R - k z J  2 + c o _ J  

If the region of physical interest 0 ~< JR <<- J, there are two fixed points, when: 

J > - A / (A  + C) ,.~ (A/2z), (6) 

namely: 

0 R = 0  JR = [(A + C) /2 (C  - B ) ] J  + A / 2 ( C  - B)  ,,~ (,//2) - (A/4z) (center) 

JR = 0 COS20R = -- ( A J  + A ) / C J  ~ - 1 + (A/~J)  (saddle) 

The phase space curves Z(JR,  OR) = ET for the case K < 0 and for three different 
values of J are reported in Fig. 4. Our aim here is to find the range of total action 
for the different kinds of modes. A similar figure was obtained by Levine et al. [10] 
by varying anharmonicity and the coupling of the oscillators and keeping the total 
action fixed. 

Due to our definition of JR, if K < 0, the straight line in Fig. 4 at JR = J 
corresponds to the antisymmetric normal mode and that at JR = 0 corresponds to 
the pure symmetric mode (vice versa for K > 0). For  low values of J only open 
curves are present, corresponding to normal modes. At J = - A / ( A  + C) (see 
Eq. (6)) the centers and the saddles appear on the line JR = 0, and the pure 
symmetric mode becomes unstable for K < 0 (the instability regards the antisym- 
metric mode if K > 0). At higher value of J, closed curves appear around the 
centers, so normal modes get "phase locked" and combine to generate different 
kinds of modes, namely transition and local modes. Thus - A/(A + C) can be 
interpreted as the threshold for transition modes. Due to the 20R dependence of Eq. 
(5), closed curves show up as pairs around OR = 0 and OR = z~, generating modes 
involving more bond 1 than bond 2 in OR = 0 and vice versa in OR = g (each single 
transition and local mode does not respect the symmetry of the two bonds, but they 
come in degenerate pairs). When closed curves do not cross the line JR = J/2,  i.e., 
they lie in the lower half of phase space, they preserve the phase of the normal mode 
of lower frequency (the one labelled by - ,  the symmetric one if K < 0) so they are 
transition modes. When the closed curves cross the line JR = J/2,  the modes do not 
preserve the phase of one normal mode anymore, so they can be said to be the local 
modes (according to the distinction transition/local given in Ref. [1]). One can find 
that the separatrix between closed and open curves is the curve relative to 
E T = bJ 2 + (12_ J, in particular this curve intersects the axis OR = 0 at JR = 0 and 
JR = [(A + C ) J  + A ] / ( C  - B)  ,,~ J - (A/2z). This means that the threshold for 
local modes is 

J = - 2A/(2A + C + B) ,~ A/Z (7) 

With Eqs. (6) and (7) one can obtain expressions for the two thresholds in total 
energy. When J = - A/ (A  + C), ET = bJ 2 + co_J in the center and ET is greater 
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Fig. 4. Phase Space Portrait in resonant action-angle 
variables OR = ~b+ -- qS_ and JR = I+ calculated 
analytically as presented in Sect. 4. A): Total action 
J = I+ + I_ = 0.3; B): J = 0.8; C): J = 3.0 (compare also 
with the results of Ref. [1] ( ~ ' =  3000cm -1, 
X = 60 cm-1, K = - 0.1 mdyne/A,) 

for all other  phase space curves, thus the min imum total energy Etr at which centers 
appear  (that is Etr a s  defined in section III)  is Err ---- bJ 2 + co_J ~ - ½XJ 2 + co_J 
with J given in Eq. (6). When  J = - 2A/(2A + B + C), ET = bJ 2 + og_J on the 
separatrix which is the first closed curve crossing J/2, and ET is greater for all open 
curves, thus the min imum total energy at which closed curves appear  also in the 
upper  half of phase space (that is Eloc) is Elo c --- bJ  2 q- co_ J ,.~ - 1Z J2  + co_ J w i t h  
J given by Eq. (7). 

We computed  the values of the thresholds with different approximations.  The 
results are reported in Table 1. The values in column 1 are computed  by numer-  
ically integrating the exact Hamil tonian;  in column 2, 3, and 4 we report  the values 
obtained by numerically integrating the Taylor  expansion of  the Hamil tonian,  
t runcated at orders, 4, 5, and 6, respectively. Finally, in column 5 the same values 
are estimated by using Eqs. (6) and (7). It  is seen that  the latter values look pret ty 
good, when compared  with the values in co lumn 1. In contrast ,  the t runcat ion at 
order  4, namely H (2) -b H (3) -b H (4), gives too  high values, and one has to consider 
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the terms of order 5 in order to get an approximation comparable with that of the 
normal form Z ~2) + Z t4). The addition of terms of order 6 gives just a small 
correction. Thus, it seems that the normal form already contains information 
hidden in higher terms of the Taylor expansion. To understand this, one should 
remark that Z tS) vanishes in our case, so that the normal forms at order 4 and 5 do 
coincide. Here too, it is reasonable to expect that the addition of the term Z t6) gives 
just a small correction, so that the approximation of 4th order in the normal form is 
actually enough to obtain a good qualitative and quantitative description of the 
dynamics. 

It is also interesting to compare these values with the thresholds obtained from 
another perturbative treatment based on nonlinear reasonances between two 
Morse oscillators. The latter are reported in our previous work [1] for transition 
modes and in the work by Jaff6 and Brumer [2] for local modes. In the limit of 
weak coupling, one obtains the same values A/2Z and A/X respectively, but refer- 
red to a total action J which is the sum of the actions of the two uncoupled 
Morse oscillators. The total energy thresholds are given there by the approximate 
expression: 

E T ~ e~'J - ½ZJ 2 -- ( [g l /4n2mc2)½J  = e ) _ J  - ½ZJ 2 

which formally coincides with the expression derived above. This correspondence 
reflects the equivalence of the representations of the Hamiltonian in local and 
normal modes, obtained by SU(2) transformation [8, 9]. The existence of two 
separate thresholds just illustrated is in good agreement with the work by Shirts 
[18], who found the change in stability of the pure symmetric mode (in the case 
K < 0) at lower energy than the threshold of local modes, which was defined 
previously by Jaff~ and Brumer [2] as the energy at which "the resonance width is 
less than the total range of action". 

5 Comparison with previous results 

The assignment of normal mode character or local mode character to the curves in 
the (OR, JR) representations of Fig. 4 is in agreement with the work by Kellman [8], 
which illustrates quite well how the phase space curves in resonant action-angle 
variables are a projection of the curves of a sphere in the phase space onto a plane. 
In the normal mode representation; the fixed points corresponding to pure normal 
modes are chosen as poles of the sphere and, when projected, become the limiting 
open curves. The other fixed points on the sphere, generated by the normal mode 
resonance, are located symmetrically at right angles with respect to the normal 
modes fixed points only in the limit d/)~ ~ O, and only in this case correspond to 
pure local modes. In the case of finite A/X they are symmetrically disposed with 
respect to the pure symmetric normal mode (when K < 0) at an angle lower than 
90 °. In this situation there are curves around these fixed points for which a phase 
relation persists between the two pure local mode components, and between the 
two pure normal mode components; besides, the relative action JR of the two 
components never changes sign so that the energy is not totally exchanged. These 
kinds of curves on the phase space sphere correspond to transition modes accord- 
ing to our previous classification. 

In this spirit we have confirmed our description of the (JR, OR) representation of 
the previous section through plots obtained by numerical integration and reported 
in Fig. 5. We give the time dependence of the pure symmetric and antisymmetric 
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coordinates Q+, Q_ and of their approximate energy contributions E+ and E_. 
The symmetric and antisymmetric energies E_+ reported in Fig. 5 are defined in 
quadratic approximation as: 

E + = !  2 _ 2~o+(x_+ + y ~ )  (8) 

These plots confirm that: 

- In the normal mode regime the symmetric and antisymmetric coordinates have 
no phase relation (Figs. 5C, 5D), while in the transition and local mode regimes 
they present "phase locking" (Figs. 5A, 5B); 

- In the transition mode regime one normal oscillator is always predominant 
(Fig. 5B), namely it has always higher energy than the other, as opposite to what 
happens for local modes (Fig. 5A). 

- In the normal mode regime the energy exchange can be of either type as shown in 
Figs. 5C, 5D; this is related to what was found in Fig. 4, where open curves may or 
may not cross the line JR = J/2. In any case the exchange between the two energies 
is never total as observed in the case of local mode basis representation: indeed 
local mode basis respects the symmetry of the problem, while symmetric and 
antisymmetric modes are not equivalent. 

6 C o n c l u s i o n s  

In this work we reexamined a system of two coupled anharmonic oscillators and 
characterized, from the point of view of normal coordinates, the vibrational modes 
at the transition between the normal mode and the local mode regimes. In doing 
this, we compared different perturbative treatments and different degrees of ap- 
proximation. First of all we considered at which degree of approximation the 
Birkhoff-Gustavson perturbation treatment yields accurate results at low total 
energy: 

i) We compared level curves obtained from formal expansion of an integral of 
motion with numerically obtained PSS; we found that a satisfactory match is 
obtained with an 8th order truncation but not at lower orders. By the way, this test, 
performed in the periodic regime, is a necessary premise to eventually applying it 
for a semiclassical quantization of the system at higher energies, as already done for 
example for the H6non-Heiles Hamiltonian. 

ii) We compared the values of the thresholds of local and transition modes 
obtained in three different ways, namely integration of the exact Hamiltonian, 
integration of the Taylor expansion of the Hamiltonian truncated at different 
orders, and analysis of the Birkhoff normal form at order 4. We conclude that in 
this respect the fourth order of the normal form already gives good results, which 
are comparable with a higher degree expansion of the Hamiltonian. 

Finally we have demonstrated that the 4th order normal form perturbation 
theory based on normal modes can be used to describe transition modes as 
accurately as the perturbation theory based on local modes. We found that in 
normal coordinates, Q + and Q_ transition modes show no energy interchange, but 
Q+ and Q_ are phase locked as in local mode coordinates. The classification of 
modes derived from the plots of energies and phases allows us to classify the curves 
in the phase space of the resonant angle-action variables of the perturbative 
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treatment (resonance between normal modes). This permits a one to one corres- 
pondence with curves of the phase space of the resonance between local modes. At 
the zeroth order in )~A/0) '2 we found the same thresholds in J in the two pertur- 
bative treatments, where J is the sum of the actions of the two harmonic oscillators 
in one case, and of the actions of the two Morse oscillators in the other case. 

Appendix A 

We consider two Morse oscillators (two methylenic CHs for example) coupled both 
kinetically and potentially as follows: 

H= ~ p2 /2m + G12PlP2 + ~ D,[1 - e x p  [ -a , (  l, - 1/0)]] 2 + K(ll _ _  11o)(12 --12o) 

Normal coordinates are those which diagonalize the whole linearized Hamiltonian, 
characterized by a kinetic matrix and a force constant matrix of the kind: 

 _(ml O12) 
G12  m -1 and F I =  K 0)~2m 

such that the Hamiltonian can be put in the form: 

H = ½~Gp + ~'-~- lo)F(!  - 1o) 

( ~ means here transposed). 
The coordinates Q1 and Q2 which diagonalize the kinetic tensor and reduce it 

to the identity are given by [19]: 

(l - 1o) = DQ;  P = l )p  

w i t h D = A A 1 / 2  where G A = A A  
So: 

Q = D_l ( i_ lo )  = ( - [2(1/m- G12)] -1/2 [2(1/m- Glz)]-l /z'~(l ,  - llo ) 
[2(1/m + G12)]-1/2 _ [2(1/m + G 1 z ) ] - m , } \ l =  l=o 

(A1) 

H = ½PP + (~FeQ F e = ] ~ ) F I D  

Diagonalization of the potential term F e gives: 

0 ) 2  ~ 1-  t2 _ ~{0)1 + 0)~2) + KGI2 -t- ½{(0)'12 - 0)~2)2 + 4K2/m 2 + m2G22[(0),12 + 0)~2) 
2 

_ ( 0 ) f  _ 0)~2)2] + 4KG1E(0)f + 0)~2) }  ~/2 

with a normal mode basis Q +, Q_ given by Eq. (7) with: 

c0s26  = -- [ K/m + ½mG12( co'x z + 09~2)] 

(A2) 

½{(¢0~ 2 - ~0~2) = + 4 K 2 / m  2 + m=G~2 [ (o ' i  2 + ¢0~2) a - (o~f  -- ¢0~2) 2] + 4KG1a(Of l  2 + ¢0~2)} I/2 

(A3) 
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Fo r  identical oscillators (09~ = co~): 

092 = 09,2 ..~ KG12 +_ IK/m + mG1209'2[ 

cos 2`5 = - sgn (K /m  + mG1209 '2) 

So when K / >  -- G12co'Em2: ~ Q+ = Q2 
Q-  - Q 1  

the mode  at higher frequency is symmetric, the one at lower frequency antisym- 
metric. On the opposite, when K ~< - G1209'2m2: 

Q÷ -- Q1 
Q- Q2 

the mode  at higher frequency is antisymmetric,  the one at lower frequency sym- 
metric. 

As already stated in Ref. [1], in presence of a kinetic coupling the system 
behaves as if the effective coupling constant  were: 

Keff /m = K / m  + mG12co '2. 

Appendix B 

The Birkhoff -Gustavson normal  form for two different Morse  oscillators of mech- 
anical frequencies co'~ and cob and anharmonicit ies X1 and X2, respectively, which 
are coupled through a linear term in the potential,  is given by: 

H(2)/hc 1 2 = ~[ ,o+(x+  + y~+) + co_(x ~_ + y~_)] (B1) 

H(3)/hc = K + + + x  3 + K _ _ _ x  3 _ + K + + _ x Z + x -  + K + _ _ x + x  2 - 

H("*)/hc = K++++x4+ + K . . . .  x 4 - + K + + - - x %  x2-- 

+ K + + + _ x a + x _  + K + _ _ _ x + x  3- 

where: 

K+ + + = ( - (07 ~ cos 3 ̀ 5 - (0~ 2 x/~2 sin 3 ̀ 5)/(,v/2c0 ~/2) 

K . . . .  ( + c07 ~ sin 3 ̀ 5 - 09~2 ~ cos 3 ̀ 5)/(,v/~co 3/2 ) 

K + + _  ~-- 

K + + + +  

K . . . .  

K + + _ _  ~-~ 

K + + + _  

K + + + _  = 

( +  co'x2x/~11cos 6 - co'22x/~2sin6)3cos6sin6/(x/~09+oj~_/2) 

( - co'~2x/r~ sin 6 - 09'22v/~2cos6)3cos6sin6/(x//209_co~+/2) 

(09'12 ZI cos"* 6 + 0)~2 Z2 sin"* ,5)(7/12(0 2 ) 

(09'12 Z1 sin"* 6 + co~ 2 ;(2 cos"* 6)(7/1209 2 ) 

7 sin 2 6 cos 2 6(09~2Xl + (0~2 Z2)/(209 + 09_ ) 

7c0s6  s in6(  - 09'12Z1 cos2 6 + co'22z2sin26)/(3093/209L/2) 

7 cos 5̀ sin `5( - c0~2 gl cos 2 ,5 + c0~2 X2 sin 2 ̀ 5)/(3~0 a+/2 09 k/2) 
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The terms of the expansion of the Hamil tonian and all higher order force 
constants are in wavenumber units, with dimensionless coordinates x +_, y_+. co_+ are 
given by Eq. (4a) in the text. cos 6 and sin 6 are obtained from Eq. (4) in the text. 
When the two oscillators are equivalent, some constants identically vanish for 
symmetry reasons, in particular H will contain only even powers of the antisym- 
metric coordinate, which is x + or x_ depending on the sign of K: indeed 6 = n/4 for 
K > 0 and 6 = 3n/4 for K < 0. I t  can be checked that the Hamiltonian in Eq. (B1), 
with the definition of the anharmonic force constants that follow, coincides with 
the Darl ing-Dennison Hamiltonian considered by Mills and Robiette [6]. 

Introducing angle-action variables and the resonant angle OR = q~+ -- qS_ as 
described in the text, the Hamiltonian Z in normal  form at fourth order is given by 
Eq. (5) in the text with the addition of the following term: (see also Ref. [9b]) 

(D JR + EJ)x/JR(J - JR) COS OR (B2) 

where: 

D = 2 ( d  - e)  = ( 3 / 2 ) K +  + + _ - ( 3 / 2 ) K +  _ _ _ - ( 5 / 2 ) K +  + + K +  + _ / c o +  

+ (5/2)K_ _ _ K+ _ _/co_ 

- (3/2) [(3o)_ + 2co + )co +/(4co 2 

+ ( 3 / 2 ) [ ( 3 c o +  + 2 c o - ) c o - / ( 4 c o  2- 

- ( 3 / 2 ) [ ( 3 c o _  + 2co+ )co+ / (4co2+  

+ ( 3 / 2 ) [ ( 3 c o +  + 2 c o _ ) c o _ / ( 4 c o  2- 

- ( i / 2 ) [ ( 3 c o +  + 2 c o _ ) c o _ / ( 4 c o  2- 

+ ( I / 2 )  [ ( 3 c o _  + 2co + )co +/ (4~o 2+ 

- co2_)CO_]K+ + +K+ +_ 

- CO2)~o+]K___K+__  

-- CO2)co-]K+ ++K+ + -  

- 092)CO+]K_ __ K + _ _  

- c o ~ + ) c o + ] K ~ +  + _  

- cn2_)co_ ] K 2 _ _  

E = 2e = (3/2)K _ _ _ + - (5/2)K_ _ _ K _  _ +/co_ 

- (3/2)[(309+ + 2co_)co_/(4co 2 _ - co2+)co+ ] K__ _K__ ÷ 

- (i/2) [co+ (3co_ + 2co+)/co_ (4co2+ - co2_)]K_ _ + K_ + + 

- [ ( 8 c o  z_ - 3coz+ ) /4co + (4co~  - coz+ ) ] K _  _ + K _  + + 

References 

1. Longhi G, Abbate S, Zagano C, Botto G, Ricard Lespade L (1992) Theor Chim Acta 82:321 
2. Sibert III EL, Reinhardt WP, Hynes JT (1982) J Chem Phys 77:3583 
3. Jaff6 C, Brumer P (1980) J Chem Phys 73:5446 
4. Chirikov BV (1979) Phys Rep 52:269 
5. a) Birkhoff GD (1927) Dynamical systems; American Mathematical Society, NY 

b) Contopoulos G (1960) Z Astrophys 49:273; Contopoulos G (1963) Astronom J 68:763; 
c) Gustavson FG (1966) Astronom J 71:670 

6. a) Giorgilli A (1979) Computer Phys Commun 16:33t; 
b) Giorgilli A, Galgani L (1978) Cel Mech 17:267 

7. a) Mills IM, Robiette AG (1985) Mol Phys 56:743; 
b) Della Valle RG (1988) Mol Phys 63:611 

8. Lehmann KK (1983) J Chem Phys 79:1098 
9. a) Xiao L, Kellman ME (1989) J Chem Phys 90:6085; 

b) Kellman ME (1985) J Chem Phys 83:3843 



232 S. Abbate et al. 

10. a) Benjamin I, Levine RD (1983) Chem Phys Lett 101:518; 
b) van Roosmalen OS, Benjamin I, Levine RD (1984) J Chem Phys 81:5986 

11. a) Swimm RT, Delos JB (1979) J Chem Phys 71:1706; 
b) Jaff6 C, Reinhardt WP (1982) J Chem Phys 77:5191; 
c) Sage ML, Child MS (1989) J Chem Phys 90:7257 

12. Matsushita T, Terasaka T (1983) Chem Phys Lett 100:138 
13. Sibert III EL (1986) Chem Phys Lett 128:404 
14. a) Shirts RB, Reinhardt WP (1982) J Chem Phys 77:5204; 

b) Reinhardt WP (1982) J Chem Phys 86:2158 
15. Thiele E, Wilson DJ (1961) J Chem Phys 35:1256 
16. Lawton RT, Child MS (1979) Mol Phys 37:1799 
17. Ghisletti D (1991), Univ di Milano, Tesi di Laurea in Fisica 
18. Shirts RB (1987) Chemical Physics 114:187 
19. Wilson EB Jr, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, NY 


